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LETTER TO THE EDITOR 

On the statistical mechanics of non-crossing chains: part 2 

H N V Temperley? 
Emeritus Professor of Applied Mathematics, University College of Swansea, Swansea, UK 

Received 23 November 1988, in final form 13 June 1989 

Abstract. We report the results of taking the reciprocal of generating function for self- 
avoiding walks on the plane square lattice with end-to-end distance specified. In a previous 
paper it was shown that this produces the generating function for irreducible two-point 
Mayer clusters. This function is found to be far simpler than the original generating 
function. It is found that a renormalisation or self-consistent field calculation should give 
very good results and that further small corrections, due to the existence of ‘traps’, can 
also be computed. It is further found that the generating function has an unphysical 
singularity very near to the physical singularity and that this accounts for difficulties of 
series analysis that have been experienced, for example, by Guttmann. 

In an old paper (Temperley (1957), referred to as I)  I pointed out that the problem 
of enumerating self-avoiding walks on a lattice is strikingly similar to the lattice gas 
problem treated by the Mayer method. However, the combinatorics of the walk problem 
are much simpler than those of the imperfect gas problem in two respects. We need 
only consider cluster integrals (or sums) whose graphs are formed by adding diagonals 
to open or closed polygons. And if we have the generating function for clusters that 
are Mayer irreducible (i.e. have graphs that are multiply connected) we need only take 
its reciprocal to obtain the generating function for self-avoiding walks. In a later paper 
(Temperley (1988), referred to as 11) I showed further that the same reciprocal relation 
holds for the generating functions of walks whose end-to-end displacement is specified 
and of two-point Mayer-type cluster integrals similarly weighted according to the 
displacements of their end points. For various reasons it was expected that the cluster 
generating function would be simpler than the original walk generating function. 

In this paper we report on the plane square lattice, using data for walks of up to 
20 steps kindly supplied by Guttmann (private communication). A program for finding 
the reciprocal of the three-variable generating function was written by D Evans of 
Swansea Computer Centre. We find indeed that the cluster generating function is far 
simpler than the walk generating function and the results suggest that a new and 
rapidly convergent system of successive approximations should exist for any lattice. 
This also gives an explanation of the difficulties experienced by Guttmann and others, 
(see, for example, Guttmann 1987), in analysing the ‘raw’ data. The generating 
functions have two real positive singularities that are very close, but definitely not 
coincident and we shall obtain an interpretation of these. 

t Present address: Thorney House, Thorney, Langport, Somerset TA10 ODW, UK. 
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For the linear lattice the results are almost trivial. The walk generating function 
is (11, equation (23)): 

W ( Z )  = 1 +2z COS e+2z2  COS 2e+2z3 COS 38 +. . . 
= (1 - C (  z))-l 

~ Z C O S  e 2z2 - I  

=(l-l-;i-+i.-;i) 

and we have pointed out in I1 that there are two different types of cluster integral: 
those that have a diagonal joining the two end points (which are thus forced to be 
coincident), the generating function for the sums of which we denote by K ( z ) ,  and 
those for which this diagonal is absent, the generating function for the sums of which 
we denote by L(z,  e) .  In these the power of z is the number of links in a cluster and 
the power of eie is the distance between the end points. For the plane square lattice, 
we obtain for C ( z )  in an obvious notation 

+ c ~ , ~ ( z ) ( c o s  28 COS 4 +COS e COS 2 4 )  +. . . 
the individual functions being given up to zI6 in table 1. 

It will be seen that these terms are numerically much smaller and far less numerous 
than those of the original generating function. Paper I1 gives reasons for expecting this. 

Table 1. Expansions up to zI6 of the functions c ~ , ~ ( z ) .  

~ 

~ o , ~ ( ~ ) = - 4 ~ ~ - 1 2 ~ ~ - 6 0 ~ ~ - 3 3 2 ~ ~ - 1 9 4 8 ~ ~ ~ - 1 1  708z1'-71 7 8 8 ~ ' ~ - 4 4 6 7 9 6 ~ ' ~ - .  . . 
C I . I ( Z )  = - 8 z 6  - 6 4 ~ '  -4242" - 2 6 0 8 ~ ' * - 1 6  1 8 4 ~ ' ~ - 1 0 2 3 0 4 ~ ' ~ - .  . . 
c2,0(z) = -42' - 362" - 2 5 6 ~ ' ~  - 1 2 6 8 ~ ' ~  - 1 2 2 0 ~ ' ~  - . . . 
c2,2(z) = - 3 2 ~ ' ~  - 5 3 6 ~ ' ~  -. . . 
c3,1(z) = - 1 7 6 ~ ' ~  - . . . 

c 1 ~ , ( z ) = 2 z  +2z3+14z5 +78z7 +482z9 + 2 9 2 6 ~ ~ ' + 1 8 0 0 6 ~ ~ ~ + 1 1 2  198zI5+. . . 

c,o(z) = 16zI5+. . . 
c3,2(z)  = 4zI5 + . . . 
C I , I ( Z )  = 4z9 + 2 0 ~ "  +120213 +96ozI5+. . .  

We conclude that a satisfactory first approximation to the walk generating function 

(2) 

and we can interpret c,,~ and as taking account of the removal, as each step is 
added, of walks that intersect themselves. Thus 'self-consistent field' treatments such 
as that of Edwards (1986 and many earlier papers) are likely to give reasonable results. 
Examination of these two series show that their radius of convergence is about (2.54)-I; 
quite definitely greater than the accepted value (2.638)-' for the radius of convergence 
of the walk generating function (Guttmann 1987). 

We can make several deductions from (2) and from the higher approximations 
obtained by introducing c ~ , ~  , cZ,, etc. First, the walks never return to the origin, so the 

is obtained by neglecting everything except c,,~ and c, , , ,  thus obtaining 

W ( Z ,  e, + ) = [ I  - C , , ~ ( Z ) - ( C O S  e+cos +)c , , , ( z ) ] - ' +o (z~ )  
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constant term in w(z, 8,4) is exactly 1. That is to say 
2sr 2sr '[I w ( z , 8 , 4 ) d e d 4 = 7  4T ( l - c ( z , 8 , 4 ) ) - ' d 8 d 4 = 1 .  ( 3 )  

4T2 0 II 0 

Secondly, the number of simply closed domains or polygons is clearly equal to the 
number of walks that end one step away from the origin. That is, the generating 
function is obtained by multiplying w(z, 8,4) by 2z(cos @+cos 4 )  and integrating: 

277 

2z(cos 8 +cos 4 )  di9 d 4  
Z W , , ~ ( Z )  = K(z)  =? 4T (4) 

0 

The generating function for the number of domains is clearly given by K ( z )  because 
this is the generating function for closed polygons with all possible diagonals added, 
thus removing those with self-intersection. (This was not explicitly pointed out in 11.) 
Note that K(z)  is not equal to q 0 ( z )  because C ~ , ~ ( Z )  also includes terms of L ( z )  for 
which the two end points coincide. Already, for the z4 term we have the integral 

which has the value -4. We can deduce other relations for the numbers of walks with 
any given end-to-end distance. Thus, for walks that end one x and one y step from 
the origin, we have, for the generating function, 

277 

0 

Finally, if we do not specify the end points of the walks, we have 

w(z,o,o)=(1-c(z,o,o))-'. ( 6 )  
Relations ( 3 ) - ( 6 )  are exact. It is of interest to examine their consequences if we 

insert the first approximation ( 2 ) .  Inspection of the remaining subseries in table 1 
suggests that inserting the series cl,'(z) to get a second approximation should give very 
reliable results, the effect of the remaining subseries being minute. 

Consider, first of all, the consequences of ( 6 ) .  The various terms of c(z,O,O) up 
to z27 have been obtained by Privman (private communication) by taking the reciprocal 
of the one-variable generating function. The result is a well behaved z series with 
regularly alternating terms whose magnitudes are much less than those of the original 
series. The radii of convergence of the positive and negative subseries are still about 
(2.54)-' i.e. definitely greater than zc= (2.638)- ' .  Thus the denominator of ( 2 )  becomes 
zero at z = z, as a result of two large terms cancelling out. This is a perfectly possible 
but rather unexpected situation. Reference to equation (1) shows that the situation in 
one dimension is quite similar, the walk generating function diverges at z = f, the 
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cluster generating function not until z = 1. There is, moreover, a curious ‘booby trap’ 
for series analysts. If we compare the magnitudes of the terms of C ~ , ~ ( Z )  and ~ C , , ~ ( Z )  

it is easy to mistake their sum for a single series with a singularity at z = -(2.54)-’ 
and with no singularity on the positive real axis! 

To examine the situation more closely consider the effect of using ( 2 )  in (3) and 
(4). Multiplying (4) by C , , ~ ( Z ) / ~ Z  and subtracting from (3), we conclude that 

K(z).r--!?L-- 2zc (z) 
-4z2+8z4+24z6+.  , . 

Cl,O(Z) 

which is exact up to terms in z‘, and a good approximation for higher terms. 
Using (2), integral (3) becomes a complete elliptic integral with parameter 

and, if k is nearly unity, then (3) gives us 

ln(4/(1- k2)1’2). 1%- 1 

co,o(z) 

(7) 

(9) 

Equation (8) may be regarded as an implicit equaltion for z ,  and (9) then gives us a 
relation between the functions C ~ , ~ ( Z )  and C , , ~ ( Z ) .  They are not very helpful in determin- 
ing critical exponents. z, may be regarded as known from earlier work and (8) and 
(9) are certainly consistent with z ,  being slightly less than the radius of convergence 
of the functions C ~ , ~ ( Z )  and q 0 ( z ) .  In principle we could have obtained these two 
functions by iteration. Given a few powers of z, we can determine all the terms of the 
walk generating function by equations like (5) and (7) and then, by finding its reciprocal, 
determine more terms of co,o and cl,o and so on. Inspection of the values in table 1 
shows that it may be necessary to include cl , l (z)  in the scheme of iteration, but that 
inclusion of other functions in table 1 is unlikely to make much difference. 

The existence of the higher-order corrections to expression (2) may perhaps be 
traced to the formation of ‘traps’ by some of the longer walks which prevent them 
from returning to the origin without self-intersection. One form of ‘trap’ is a spiral 
self-avoiding walk, the numbers of which have been shown by various workers to be 
related to the number of partitions of N which is proportional only to AN”2,  so the 
conclusion that their effect on the generating function is small is reasonable. These 
corrections can, in principle, be computed by the iteration process just described. 

Our work entirely confirms the impression that analysis of walk data is simplified 
by converting the walk generating function to a cluster generating function by taking 
its reciprocal. The very rapid fall off in the magnitudes of the functions in table 1 as 
the distance between the end points of the clusters increases might have been anticipated 
from the work on the Gaussian model in 11, which shows the two-point cluster integrals 
falling off exponentially as the end-to-end distance increases. 

If the true situation is that the generating function has an unphysical real positive 
singularity slightly beyond the true singularity then the difficulties found by Guttmann 
(1987) and others in analysing the data are completely explained. According to 
Guttmann (1987) this is the very situation that makes ‘ D  log Pad6’ analysis ineffective. 
It also explains why an analysis in terms of confluent singularities seems to be ‘nearly 
right’. Equation (1) shows that exactly this situation occurs in one dimension. The 
original generating function has its singularity at z = 4 and its reciprocal has an 
unphysical singularity at z = 1. 
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I thank Professor Guttmann and Professor Privman for making their data available 
and Mr D Evans for writing the program. I thank Professor Sir Sam Edwards for 
helpful correspondence. I also thank the Leverhulme Foundation for an Emeritus 
Fellowship. 

Nofe added in proof: The coefficients of ~ ~ ' - 2 ~ ~  inclusive are available for the plane square lattices. The 
uniformity of signs shown in table 1 is beginning to break down, but the conclusions are not affected. 
Similar information for the plane triangular and simple cubic lattices should be available soon. 
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